Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Nr 1/75 (2021)

Artykuły

The importance of Blockchain technology in the development of agricultural insurance – a review of applications and solutions

  • Katarzyna Kosior
Opublikowane: 26.06.2021

Abstrakt

The aim of the article was to analyse the benefits and risks associated with the use of Blockchain technology (blockchain) in the area of agricultural insurance. Literature analysis and case study method were used to evaluate the potential of blockchain. The analysis covered solutions and applications offered by private companies on commercial digital platforms and the insurance offer available or planned to be available on platforms created with the participation and financial involvement of the public sector. The conducted analysis allows concluding that solutions based on Blockchain, combined with additional functions of integrating and analysing data from the environment, may significantly improve insurance protection and risk management in agriculture. The reliance on the data registered and checked by all the nodes of the network increases the certainty and transparency of the transactions on the insurance market and at the same time leads to the reduction of the information asymmetry, which is the main reason for the market failure in the segment of agricultural insurance. Smart insurance contracts and solutions assuming automatic payments and indemnity payments (e.g. in stable cryptocurrencies) can further reduce transaction costs and improve contractual relations between insurers and insuring farmers. As a result, Blockchain can increase the pool of available insurance and coverage in the agricultural sector. In particular, this technology strengthens the potential to develop parametric insurance that focuses on weather and climate change risks. On the other hand, Blockchain technology is also associated with certain problems and risks (such as the risk of deliberate contamination of the blockchain with unverified data at the input or of low quality, the problem of a large carbon footprint of public P2P networks, or the still uncertain shape of regulations and legal solutions relating to smart contracts making payments in cryptocurrencies). Nevertheless, it is to be expected that the interest in digitizing agricultural insurance based on Blockchain technology will grow. This will be influenced by the increased frequency of disaster events caused by climate change and the rising costs of operating traditional insurance instruments for the risks involved in agriculture.

Bibliografia

  1. Adam-Kalfon P. et al., Blockchain, a catalyst for new approaches in insurance, PwC 2017, https://www.pwc.com.au/publications/pwc-blockchain.pdf, access 4.08.2021. [Google Scholar]
  2. Agroinsurance, Электронный Сервис «Agroinsurance», https://agro-insurance.qoldau.kz/en/info-start, access 25.07.2021. [Google Scholar]
  3. Agroinsurance, Index insurance in plant farming, https://agro-insurance.qoldau.kz/en/index-start, access 27.07.2021. [Google Scholar]
  4. Agroinsurance, Статистика по типам страховых продуктов – 2021 год, https://agro-insurance.qoldau.kz/en/index/statistics/all-products?Year=2021, access 29.07.2021. [Google Scholar]
  5. Andre B., Which blockchain is right for your DApp?, 14.02.2019, https://arbolmarket.medium.com/which-blockchain-is-right-for-your-dapp-89966f4dc515, access 4.08.2021. [Google Scholar]
  6. Andriesse M., Drought is insurable, 16.06.2021, https://www.swissre.com/risk-knowledge/mitigating-climate-risk/drought-is-insurable.html, access 27.07.2021. [Google Scholar]
  7. Arbolmarket, https://www.arbolmarket.com/, access 4.08.2021. [Google Scholar]
  8. Babich V., Hilary G., Distributed Ledgers and Operations: What Operations Management Researchers Should Know about Blockchain Technology, “Manufacturing and Service Operations Management” 2020, Vol. 22 (2). [Google Scholar]
  9. BEACON, Beacon Newsletter, Issue no 7, May 2021, https://beacon-h2020.com/newsletter-7/, access 6.08.2021. [Google Scholar]
  10. BEACON, https://beacon-h2020.com/concept/, access 1.08.2021. [Google Scholar]
  11. Castillo M., Boucher S., Carter M., Index insurance: Using public data to benefit small-scale agriculture, “International Food and Agribusiness Management Review” 2016, Vol. 19 (A). [Google Scholar]
  12. Cekuta R., Cheriegate K., Wilcox B., The Computer and the Farmer. The role of information technology in boosting agricultural productivity in Kazakhstan. Special Policy Brief. Caspian Policy Center (bd.), https://www.caspianpolicy.org/wp-content/uploads/2019/10/CEEP-REPORT-computer-and-the-farmer.pdf, access 26.07.2021. [Google Scholar]
  13. CORDIS, Boosting Agricultural Insurance based on Earth Observation data. Beacon Project Information, https://cordis.europa.eu/project/id/821964, access 2.08.2021. [Google Scholar]
  14. Crunchbase, Arbol – summary information, https://www.crunchbase.com/organization/arbol-markets, access 4.08.2021. [Google Scholar]
  15. Digital Kazakhstan, State programme “Digital Kazakhstan”, approved by the Decree of the Government of the Republic of Kazakhstan of December 12, 2017, No. 827, https://digitalkz.kz/wp-content/uploads/2020/03/ГП%20ЦК%20на%20англ%2003,06,2020.pdf, access 27.07.2021. [Google Scholar]
  16. ERiGŻ, Identyfikacja podstaw przemian i problemów ubezpieczeń rolnych, red. M. Soliwoda, Warszawa 2020. [Google Scholar]
  17. Evans S., Arbol taps machinery sensors for parametric crop insurance triggers, 24.02.2021, https://www.artemis.bm/news/arbol-taps-machinery-sensors-for-parametric-crop-insurance-triggers/, access 8.08.2021. [Google Scholar]
  18. Finck M., Blockchain and the General Data Protection Regulation. Can distributed ledgers be squared with European data protection law?, European Parliamentary Research Service, Scientific Foresight Unit (STOA), 2019. [Google Scholar]
  19. Geodata for Agriculture and Water, Satellite-based soil moisture records for increased access to financial services, 17.09.2020, https://g4aw.spaceoffice.nl/files/files/G4AW/webinar/Session%201%20-%20VanderSat%20-satellite-based%20soil%20moisture%20records%20for%20increased%20access%20to%20financial%20services.pdf, access 29.07.2021. [Google Scholar]
  20. How insurance can help combat climate change, MacKinsey and Company, 6.01.2021, https://www.mckinsey.com/industries/financial-services/our-insights/how-insurance-can-help-combat-climate-change, access 26.07.2021. [Google Scholar]
  21. Insureblocks, Parametric insurance revisited – insights from Arbol, Insureblock Podcast (episode 145), 24.01.2021, https://insureblocks.com/ep-145-parametric-insurance-revisited-insights-from-arbol/, access 10.08.2021. [Google Scholar]
  22. IPFS, Case study: Arbol, https://docs.ipfs.io/concepts/case-study-arbol/#the-story, access 11.08.2021. [Google Scholar]
  23. IPFS, What is IPFS, https://docs.ipfs.io/concepts/what-is-ipfs/#decentralization, access 11.08.2021. [Google Scholar]
  24. ITU, WSIS Prizes Contest 2020 Nominee – Digital platform for business Qoldau, https://www.itu.int/net4/wsis/stocktaking/Prizes/2021/DetailsPopup/15742745315624085, access 25.07.2021. [Google Scholar]
  25. Jha S., Andre B., Jha O., ARBOL: Smart Contract Weather Risk Protection for Agriculture, 2019, https://vdocuments.mx/reader/full/arbol-smart-contract-weather-risk-protection-for-agriculture-2019–08–08-arbol, access 8.08.2021. [Google Scholar]
  26. Kamilaris A., Cole I., Prenafeta-Boldú F.X., Blockchain in agriculture [in:] Food Technology Disruptions, ed. Ch. Galanakis, Academic Press, 2021. [Google Scholar]
  27. Kar A.K., Navin L., Diffusion of blockchain in insurance industry: An analysis through the review of academic and trade literature, “Telematics and Informatics” 2021, Vol. 58. [Google Scholar]
  28. Kowalczyk G., Susza rozgrzewa rolników i pcha do sporu z rządem, “Dziennik Gazeta Prawna”, 9.08.2021. [Google Scholar]
  29. Kulawik J., Ryzyko i tradycyjne ubezpieczenia rolne – podstawy teoretyczne [in:] Ocena funkcjonowania ubezpieczeń upraw i zwierząt gospodarskich w polskim rolnictwie, red. J. Pawłowska-Tyszko, Warszawa, Instytut Ekonomiki Rolnictwa i Gospodarki Żywnościowej, 2017. [Google Scholar]
  30. Lekakis E. et al., Redefining Agricultural Insurance Services Using Earth Observation Data. The Case of Beacon Project [in:] International Symposium on Environmental Software Systems, Cham, Springer, 2020. [Google Scholar]
  31. Ministerstwo Cyfryzacji, Leksykon pojęć na temat technologii blockchain oraz kryptowalut, red. K. Piech, Warszawa 2016. [Google Scholar]
  32. NIK, Wspieranie środkami publicznymi systemu ubezpieczeń rolniczych. Informacja o wynikach kontroli, Departament Rolnictwa i Rozwoju Wsi, Warszawa 2020, s. 10, https://www.nik.gov.pl/plik/id,22251, vp,24920.pdf, access 28.07.2021. [Google Scholar]
  33. OECD, Transformative Technologies and Jobs of the Future. Background report for the Canadian G7 Innovation Ministers’ Meeting. Montreal, Canada 27–28 March 2018, 2018. [Google Scholar]
  34. Official Information Source of the Prime Minister of the Republic of Kazakhstan, Government considers development of cryptoindustry and blockchain technologies, 11.05.2021, https://primeminister.kz/en/news/v-pravitelstve-rassmotreli-voprosy-razvitiya-kriptoindustrii-i-blokcheyn-tehnologiy-1141139, access 25.07.2021. [Google Scholar]
  35. Qoladu.kz, Zerde – Digital International Partnership, https://zerde.digital/en/qoldau-kz, access 25.07.2021. [Google Scholar]
  36. Soliwoda M. Pawłowska-Tyszko J., Gorzelak A., Zarządzanie ryzykiem katastroficznym w rolnictwie – wybrane problemy. Perspektywa międzynarodowa i Polski, “Finanse, Rynki Finansowe, Ubezpieczenia” 2017, nr 1. [Google Scholar]
  37. Statista, Number of Internet of Things (IoT) active connections in agriculture in the European Union (EU) in 2016, 2019, 2022 and 2025 (in millions), https://www.statista.com/statistics/691880/agriculture-iot-active-connections-in-the-eu/, access 31.07.2021. [Google Scholar]
  38. Stoll Ch., Klaaßen L., Gallersdörfer U., The carbon footprint of bitcoin, Ministerstwo Cyfryzacji, “Joule” 2019, Vol. 3(7). [Google Scholar]
  39. Sushchenko O., Schwarze R., Distributed Ledger Technology for an Improved Index-Based Insurance in Agriculture, “Journal of Integrated Disaster Risk Management” 2020, Vol. 10(2). [Google Scholar]
  40. Swiss Re, Strengthening risk resilience: 2020 highlights. Soil moisture deficit index, https://reports.swissre.com/sustainability-report/2020/solutions/strengthening-risk-resilience-2020-highlights/soil-moisture-deficit-index.html, access 27.07.2021. [Google Scholar]
  41. Tasca P., Insurance under the Blockchain Paradigm [in:] Business Transformation through Blockchain, eds. H. Treiblmaier, R. Beck, Cham, Palgrave Macmillan, 2019. [Google Scholar]
  42. VanderSat, Drought insurance for Kazakh farmers, https://vandersat.com/cases/drought-insurance-for-kazakh-farmers/, access 27.07.2021. [Google Scholar]
  43. Wniosek w sprawie Rozporządzenia Parlamentu Europejskiego i Rady w sprawie rynków kryptoaktywów i zmieniające dyrektywę (UE) 2019/1937, Bruksela, 24.9.2020, COM(2020) 593 final 2020/0265(COD). [Google Scholar]
  44. World InsurTech Report 2020, CapGemini and EFMA 2020. [Google Scholar]
  45. Xiong H. et al., Blockchain technology for agriculture: applications and rationale, “Frontiers in Blockchain” 2020, No. 3. [Google Scholar]

Downloads

Download data is not yet available.

Podobne artykuły

1 2 3 4 5 6 7 8 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.