Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 15 Nr 2 (2022)

Artykuły

The Effects of the Action of Chromium, Aluminum, Nickel and Iron on Human Fibroblast and Stem Cell Cultures

DOI: https://doi.org/10.32084/tkp.5143  [Google Scholar]
Opublikowane: 31.12.2022

Abstrakt

This review is a collection of general information about chromium, aluminum, nickel and iron. We tried to include not only the data about absorption, metabolism, interactions with other elements and the importance of those microelements in the human body but also their toxic and mutagenic effects. Moreover, we examined their effect on human fibroblast and stem cell cultures which may be important due to abuse of supplementation in the population nowadays.

Bibliografia

  1. Akhtar, Nasreen, et al. 2004. “Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies.” Journal of hazardous materials 108, no. 1-2:85-94. Doi: 10.1016/j.jhazmat.2004.01.002 DOI: https://doi.org/10.1016/j.jhazmat.2004.01.002 [Google Scholar]
  2. Alshatwi, Ali A., Periasamy V. Subbarayan, E. Ramesh, et al. 2013. “Aluminium oxide nanoparticles induce mitochondrial-mediated oxidative stress and alter the expression of antioxidant enzymes in human mesenchymal stem cells.” Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 30, no. 1:1-10. Doi: 10.1080/19440049.2012.729160 DOI: https://doi.org/10.1080/19440049.2012.729160 [Google Scholar]
  3. Anane, Rachid, et al. 1995. “Bioaccumulation of water-soluble aluminum chloride in the hippocampus after transdermal uptake in mice.” Arch Toxicol. 69, no. 8:568-71. Doi: 10.1007/s002040050214 DOI: https://doi.org/10.1007/s002040050214 [Google Scholar]
  4. Anane, Rachid, and E. E. Creppy. 2001. “Lipid peroxidation as pathway of aluminum cytotoxicity in human skin fibroblast cultures: Prevention by superoxide dismutase+catalase and vitamins E and C.” Human & Experimental Toxicology 20:477-81. DOI: https://doi.org/10.1191/096032701682693053 [Google Scholar]
  5. Asp, Linnea, et al. 2011. “Effect of pro-inflammatory cytokines on expression of kynurenine pathway enzymes in human dermal fibroblasts.” Journal of Inflammation 8, no. 25. Doi: 10.1186/1476-9255-8-25 DOI: https://doi.org/10.1186/1476-9255-8-25 [Google Scholar]
  6. Baker, R.D., F.R. Greer, and The Committee on Nutrition. 2010. “Diagnosis and prevention of iron deficiency and iron-deficiency anemia in infants and young children (0-3 years of age).” Pediatrics 126:1040-1050. DOI: https://doi.org/10.1542/peds.2010-2576 [Google Scholar]
  7. Beard, John L. 2008. “Why iron deficiency is important in infant development.” J. Nutr. 138:2534-536. DOI: https://doi.org/10.1093/jn/138.12.2534 [Google Scholar]
  8. Biedermann, K. A. and J. R. Landolph. 1990. “Role of valence state and solubility of chromium compounds on induction of cytotoxicity, mutagenesis, and anchorage independence in diploid human fibroblasts.” Cancer Res. 50, no. 24:7835-842. PMID: 2253225. [Google Scholar]
  9. Bongso, Ariff, and Mark Richards. 2004. “History and perspective of stem cell research.” Best Pract Res Clin Obstet Gynaecol.18, no. 6:827-42. Doi: 10.1016/j.bpobgyn.2004.09.002 DOI: https://doi.org/10.1016/j.bpobgyn.2004.09.002 [Google Scholar]
  10. Brzezińska-Błaszczyk, Ewa and Anna Zalewska. 1997. “Mastocyty i fibroblasty – obojętni sąsiedzi czy przyjaźni partnerzy?” Postępy Biologii Komórki 24, no. 2:127-43. [Google Scholar]
  11. Bumgardner, J., and J. Doeller, and L. C. Lucas. 1995. “Effect of nickel-based dental casting alloys on fibroblast metabolism and ultrastructural organization.” Journal of Biomedical Materials Research 29, no. 5:611-17. Doi: 10.1002/jbm.8202900508 DOI: https://doi.org/10.1002/jbm.820290508 [Google Scholar]
  12. Caltagirone, Annie, et al. 2001. “Modulation of cellular iron metabolism by hydrogen peroxide effects of H2O2 in the expression and function of iron – responsive element-containing mRNAs in B6 fibroblasts.” Metabolism and Bioenergetics 276, no. 23:P19738-19745. Doi: 10.1074/jbc.M100245200 DOI: https://doi.org/10.1074/jbc.M100245200 [Google Scholar]
  13. Castleman, L, and S. Motzkin. 1981. Biocompatibility of clinical implants materials. Boca Raton, FL: CRC press. [Google Scholar]
  14. Chau, Y.K. and O. T. R. K. Cordeiro. 1995. „Occurrence of nickel in the Canadian environment.” Environ. Rev. 3:95-120. DOI: https://doi.org/10.1139/a95-004 [Google Scholar]
  15. Chauhan, S. S., R. Thakur, and G. D. Sharma. 2008. „Nickel: its availability and reactions in soil.” J. Indl. Polln. Ctrl. 24, no. 1:57-62. [Google Scholar]
  16. Chifman J., R. Laubenbacher, and S. V. Torti. 2014. “A systems biology approach to iron metabolism.” Adv. Exp. Med. Biol. 844:201-25. DOI: https://doi.org/10.1007/978-1-4939-2095-2_10 [Google Scholar]
  17. Clodfelder, Buffie J., et al. 2005. “Oral administration of the biomimetic [Cr3O(O2CCH2CH3)6(H2O)3]+ increases insulin sensitivity and improves blood plasma variables in healthy and type 2 diabetic rats.” Journal of biological inorganic chemistry: JBIC: a publication of the Society of Biological Inorganic Chemistry 10, no. 2:119-30. Doi:10.1007/s00775-004-0618-0 DOI: https://doi.org/10.1007/s00775-004-0618-0 [Google Scholar]
  18. Costello, Rebecca B., et al. 2016. “Chromium supplements for glycemic control in type 2 diabetes: limited evidence of effectiveness.” Nutrition Reviews 74, no. 7:455-68. Doi:10.1093/nutrit/nuw011 DOI: https://doi.org/10.1093/nutrit/nuw011 [Google Scholar]
  19. Czarnek, Katarzyna, and Andrzej K. Siwicki. 2021a. “Influence of chromium (III), cobalt (II) and their mixtures on cell metabolic activity.” Current Issues in Pharmacy and Medical Sciences 34, no. 2:87-93. Doi: 10.2478/cipms-2021-0019 DOI: https://doi.org/10.2478/cipms-2021-0019 [Google Scholar]
  20. Czarnek, Katarzyna, and Andrzej K. Siwicki. 2021b. “Genotoxicity of chromium (III) and cobalt (II) and interactions between them.” Current Issues in Pharmacy and Medical Sciences 34, no. 3:142-48. Doi: 10.2478/cipms-2021-0021 DOI: https://doi.org/10.2478/cipms-2021-0021 [Google Scholar]
  21. Czarnek Katarzyna, Sylwia Terpiłowska, and Andrzej K. Siwicki. 2019. “Genotoxicity and mutagenicity of nickel(II) and iron(III) and interactions between these microelements.” Trace Elements and Electrolytes 36:17-24. Doi: 10.5414/TEX01545 DOI: https://doi.org/10.5414/TEX01545 [Google Scholar]
  22. Daghigh, Farzaneh, et al. 2002. “Human gingival fibroblasts produce nitric oxide in response to proinflammatory cytokines.” Journal of Periodontology 73, no. 4:392-400. Doi: 10.1902/jop.2002.73.4.392 DOI: https://doi.org/10.1902/jop.2002.73.4.392 [Google Scholar]
  23. Das, J., M. H. Kang, E. Kim, et al. 2015. “Hexavalent chromium induces apoptosis in male somatic and spermatogonial stem cells via redox imbalance.” Sci Rep. 5:13921. Doi:10.1038/srep13921 DOI: https://doi.org/10.1038/srep13921 [Google Scholar]
  24. Drake, Harold L. 1982. “Occurrence of nickel in carbonmonoxide dehydrogenase from Clostridium pasteurianum and Clostridium thermoaceticum.” Journal of Bacteriology 149, no. 2:561-66. DOI: https://doi.org/10.1128/jb.149.2.561-566.1982 [Google Scholar]
  25. Fathima, Aafreen, and Jonnalagadda R. Rao. 2018. “Is Cr (III) toxic to bacteria: Toxicity studies using Bacillus subtilis and Escherichia coli as model organism.” Archives of Microbiology 200:453-62. Doi: 10.1007/s00203-017-1444-4 DOI: https://doi.org/10.1007/s00203-017-1444-4 [Google Scholar]
  26. Fiejka, M, M. Długaszek, G. Alfreda, et al. 2001. In Med. Dośw. Mikrobiol. 53:102-106. [Google Scholar]
  27. Gabbiani, Giulio. 1992. “The biology of the myofibroblast.” Kidney International 41, no. 3:530-32. Doi: 10.1038/ki.1992.75 DOI: https://doi.org/10.1038/ki.1992.75 [Google Scholar]
  28. Ganz, T., and E. Nemeth. 2012. “Iron metabolism: in- teractions with normal and disordered erythro- poiesis.” Cold Spring Harb. Perspect. Med. 2. Doi: 10.1101/cshperspect.a011668 DOI: https://doi.org/10.1101/cshperspect.a011668 [Google Scholar]
  29. Ganz, T. 2018. “Iron and infection.” Int. J. Hema- tol. 107:7-15. DOI: https://doi.org/10.1007/s12185-017-2366-2 [Google Scholar]
  30. Górska, Anna, and Robert Piech. 2018. “Właściwości i znaczenie żelaza oraz metody jego oznaczania.” Analit 6:2-9. [Google Scholar]
  31. Gromysz-Kałkowska, Kazimiera, and Ewa Szubartowska. 1999. Glin – występowanie w przyrodzie oraz wpływ na organizmy roślin, zwierząt i człowieka. Lublin: Wydawnictwo UMCS. [Google Scholar]
  32. Herzog, Erica, and Richard Bucala. 2010. “Fibrocytes in health and disease.” Experimental Hematology 38, no. 7:548-56. Doi: 10.1016/j.exphem.2010.03.004 DOI: https://doi.org/10.1016/j.exphem.2010.03.004 [Google Scholar]
  33. Hinz, Boris, et al. 2007. “The myofibroblasts: One function, multiple organs.” The American Journal of Pathology 170, no. 6:1807-816. Doi: 10.2353/ajpath.2007.070112 DOI: https://doi.org/10.2353/ajpath.2007.070112 [Google Scholar]
  34. Hostynek, J.J., and H. I. Maibach. 2002. Nickel and the skin. Boca Raton: CRC Press. DOI: https://doi.org/10.1201/b14242 [Google Scholar]
  35. Howard, H. 2003. The environment and human health. Ed. Michael Mc. Cually, MIT Press. [Google Scholar]
  36. Iannotti, L.L., J. M. Tielsch J. M., M. M. Black, et al., 2006. “Iron supplementation in early childhood: health benefits and risks.” Am. J. Clin. Nutr. 84:1261-276. DOI: https://doi.org/10.1093/ajcn/84.6.1261 [Google Scholar]
  37. Ilic, D., and J.M. Polak. 2011. “Stem cells in regenerative medicine: introduction.” Br Med Bull. 98:117-26. Doi:10.1093/bmb/ldr012 DOI: https://doi.org/10.1093/bmb/ldr012 [Google Scholar]
  38. Khan, Safi U., and Abdul Moheman. 2006. “Effect of heavy metals (cadmium and nickel) on the seed germination, growth and metals uptake by chilli (Capsicum frutescens) and sunflower plants (Helianthus annus).” Pollution Research 25, no. 1:99-104. [Google Scholar]
  39. Killilea, David, et al. 2003. “Iron accumulation during cellular senescence in human fibroblasts in vitro.” Antioxidants and Redox Signaling 5.5: 507-16. DOI: https://doi.org/10.1089/152308603770310158 [Google Scholar]
  40. King, M.M., K.K. Lynn, and C. Y. Huang. 1985. In Progress in Nickel Toxicology, edited by S. S. Brown, and F. W. Sunderman Jr., 117-20. Oxford: Blackwell. [Google Scholar]
  41. Matlock, M.M., B.S. Howerton, and D. A. Atwood, 2002. “Chemical precipitation of heavy metals from acid mine drainage.” Water Res. 36:4757-764. DOI: https://doi.org/10.1016/S0043-1354(02)00149-5 [Google Scholar]
  42. Kolios, George, and Yuben Moodley. 2013. “Introduction to stem cells and regenerative medicine.” Respiration. 85 (1):3-10. doi: 10.1159/000345615 DOI: https://doi.org/10.1159/000345615 [Google Scholar]
  43. Konturek, Stanisław. 2000. Fizjologia człowieka, układ trawienny i wydzielanie wewnętrzne. Kraków: Wydawnictwo Uniwersytetu Jagiellońskiego. [Google Scholar]
  44. Kumar, Dharmendra, and Satya P. Gangwar. 2012. “Role of antioxidants in detoxification of Cr (VI) toxicity in laboratory rats.” J. Environ Sci Eng. 54 (3):441-46. PMID: 24749208. [Google Scholar]
  45. Leszek, Jerzy, et al. 2017. “Type 3 Diabetes Mellitus: A Novel Implication of Alzheimers Disease.” Current topics in medicinal chemistry 17, no. 12:1331-335. Doi: 10.2174/1568026617666170103163403 DOI: https://doi.org/10.2174/1568026617666170103163403 [Google Scholar]
  46. Logan, Darren, et al. 2006. “Regulation of pigmentation in zebrafish melanophores.” Pigment Cell Research 19 (3):206-13. Doi: 10.1111/j.1600-0749.2006.00307.x DOI: https://doi.org/10.1111/j.1600-0749.2006.00307.x [Google Scholar]
  47. Lukaski, Henry C., et al. 2007. “Chromium picolinate supplementation in women: effects on body weight, composition, and iron status.” Nutrition (Burbank, Los Angeles County, Calif.) 23, no. 3:187-95. Doi: 10.1016/j.nut.2006.12.001 DOI: https://doi.org/10.1016/j.nut.2006.12.001 [Google Scholar]
  48. Marklund, Stefan. 1992. “Regulation by cytokines of extracellular superoxide dismutase and other superoxide dismutase isoenzymes in fibroblasts.” Journal of Biological Chemistry 267 (10):6696-701. Doi: 10.1016/S0021-9258(19)50482-3 DOI: https://doi.org/10.1016/S0021-9258(19)50482-3 [Google Scholar]
  49. Mehta, K.J., S. J. Farnaud, and P. A. Sharp. 2019. “Iron and liver fibrosis: Mechanistic and clinical aspects.” World J Gastroenterol. 25 (5):521-38. Doi: 10.3748/wjg.v25.i5.521 DOI: https://doi.org/10.3748/wjg.v25.i5.521 [Google Scholar]
  50. Milto I. V., I.V. Suhodolo, V.D. Prokopieva, et al. 2016. “Molecular and Cellular Bases of Iron Metabolism in Humans.” Biochemistry 81:549-64. DOI: https://doi.org/10.1134/S0006297916060018 [Google Scholar]
  51. Muckenthaler M. U, S. Rivella, M. W. Hentze, et al. 2017. “A Red Carpet for Iron Metabolism.” Cell. 168 (3):344-61. Doi: 10.1016/j.cell.2016.12.034 DOI: https://doi.org/10.1016/j.cell.2016.12.034 [Google Scholar]
  52. Nam, S.M., J. W. Kim, D. Y. Yoo, et al. 2016. “Effects of aluminum on the reduction of neural stem cells, proliferating cells, and differentiating neuroblasts in the dentate gyrus of D-galactose-treated mice via increasing oxidative stress.” J Vet Sci. 17 (2):127-36. Doi: 10.4142/jvs.2016.17.2.127 DOI: https://doi.org/10.4142/jvs.2016.17.2.127 [Google Scholar]
  53. Niwa, H., J. Miyazaki, and A.G. Smith. 2000 .“Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells.” Nat Genet. 24 (4):372-76. Doi: 10.1038/74199 DOI: https://doi.org/10.1038/74199 [Google Scholar]
  54. Nowakowska, Danuta, et al. 2021. “Biological response induced in primary human gingival fibroblasts upon exposure to various types of injectable astringent retraction agents.” Materials 14 (8):2081. Doi: 10.3390/ma14082081 DOI: https://doi.org/10.3390/ma14082081 [Google Scholar]
  55. Otag, Aynur, et al. 2014. “Responses of trace elements to aerobic maximal exercise in elite sportsmen.” Global journal of health science 6, no. 3:90-96. Doi: 10.5539/gjhs.v6n3p90 DOI: https://doi.org/10.5539/gjhs.v6n3p90 [Google Scholar]
  56. Pechova Alena, and Leos Pavlata. 2007. “Chromium as an essential nutrient: A review.” Veterinarni Medicina 52(1):1-18. Doi: 10.17221/2010-VETMED DOI: https://doi.org/10.17221/2010-VETMED [Google Scholar]
  57. Piotrowska, Anna, et al. 2018. “Biologiczne znaczenie chromu III.” Medycyna Pracy 69, no. 2:211-23. Doi: 10.13075/mp.5893.00625 DOI: https://doi.org/10.13075/mp.5893.00625 [Google Scholar]
  58. Ponsonnet, L, et al. 2002. “Effect of surface topography and chemistry on adhesion, orientation, and growth of fibroblasts on nickel-titanium substrates.” Materials Science and Engineering: C 21 (1-2):157-65. Doi: 10.1016/S0928-4931(02)00097-8 DOI: https://doi.org/10.1016/S0928-4931(02)00097-8 [Google Scholar]
  59. Putters, J., D. Kaulesar Sukul, G. de Zeeuw, et al. 1992. “Comparative cell culture effects of shape memory metal (Nitinol), Nickel and Titanium: A biocompatibility estimation.” Eur. Surg. Res. 24:378-82. DOI: https://doi.org/10.1159/000129231 [Google Scholar]
  60. Racine, Melanie, et al. 2018. “Reversal of Sp1 transactivation ang TGF1/SMAD1 signaling by H2S prevent nickel-induced fibroblast activation.” Toxicology and Applied Pharmacology 356:25-35. Doi: 10.1016/j.taap.2018.07.029 DOI: https://doi.org/10.1016/j.taap.2018.07.029 [Google Scholar]
  61. Ross, S.M. 1994. “Sources and forms of potentially toxic metals in soil – plant systems.” In Toxic metals in soil – plant systems, edited by S M. Ross, 3-25. New York: Wiley and Sons. [Google Scholar]
  62. Sawicki, Wojciech. 2008. “Tkanka łączna właściwa.” In Histologia. Warszawa: Wydawnictwo Lekarskie PZWL. [Google Scholar]
  63. Schnegg, H.A., and M. Kirchgessner. 1980. “Toxic effects of trace elements on the reproduction of mice and rats.” Arch. Environ. Hlth. 23:102-106. DOI: https://doi.org/10.1080/00039896.1971.10665963 [Google Scholar]
  64. Sevin, I.F. 1980. Nickel, Metals in the environment. London: Academic Press. [Google Scholar]
  65. Shrivastava, Yamini, et al. 2005. “Cytotoxicity studies of chromium (III) complexes on human dermal fibroblasts.” Free Radic Biol Med. 38 (1):58-69. Doi: 10.1016/j.freeradbiomed.2004.09.029 DOI: https://doi.org/10.1016/j.freeradbiomed.2004.09.029 [Google Scholar]
  66. Shen, L., C.X. Song, C. He, et al. 2014. “Mechanism and function of oxidative reversal of DNA and RNA methylation.” Annu Rev Biochem. 83:585-614. Doi: 10.1146/annurev-biochem-060713-035513 DOI: https://doi.org/10.1146/annurev-biochem-060713-035513 [Google Scholar]
  67. Sigel, Helmut, and Astrid Sigel. 1988. Nickel and its role in biology. Metal ions in biological systems. New York: Marcel Dekker. [Google Scholar]
  68. Smith, A. 2006. “A glossary for stem-cell biology.” Nature 441:1060. Doi: 10.1038/nature04954 DOI: https://doi.org/10.1038/nature04954 [Google Scholar]
  69. Sugden, David, et al. 2004. “Melatonin, melatonin receptors and melanophores: A moving story.” Pigment Cell Research 17 (5):454-60. Doi: 10.1111/j.1600-0749.2004.00185.x DOI: https://doi.org/10.1111/j.1600-0749.2004.00185.x [Google Scholar]
  70. Sugden, K.D., and D.M. Stearns. 2000. “The role of chromium(V) in the mechanism of chromate-induced oxidative DNA damage and cancer.” Journal of environmental pathology, toxicology and oncology: Official organ of the International Society for Environmental Toxicology and Cancer 19 (3):215-30. Doi: 10.1016/j.tiv.2004.03.001 DOI: https://doi.org/10.1016/j.tiv.2004.03.001 [Google Scholar]
  71. Sunderman, F.W., J.B. Sullivan, and G.R. Krieger. 2001. Nickel in clinical environmental health and toxic exposures. Baltimore: Williams and Wilkins. [Google Scholar]
  72. Śpiewak, Radosław, and Justyna Piętowska.. 2006. “Nikiel – alergen wyjątkowy. Od struktury atomu do regulacji prawnych.” Alergologia Immunologia 3, no. 3-4:58-62. [Google Scholar]
  73. Takahashi, K., and S. Yamanaka. 2006. “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.” Cell. 126 (4):663-76. Doi: 10.1016/j.cell.2006.07.024 DOI: https://doi.org/10.1016/j.cell.2006.07.024 [Google Scholar]
  74. Tikhomirov, F.A., N.N. Kuznetsova, and L.G. Magina. 1987. “Effect of nickel on plants in a sod-podzolic soil.” Agrokhimiya 8:74-80. [Google Scholar]
  75. Vincent, John. 2010. “Chromium: Celebrating 50 yers as an essential element?” Dalton Trans 39 (16):3787-794. Doi: 10.1039/b920480f DOI: https://doi.org/10.1039/b920480f [Google Scholar]
  76. Wang, Yafei, et al. 2017. “Carcinogenicity of chromium and chemoprevention: A brief update.” Onco Targets Ther. 10:4065-4079. Doi: 10.2147/OTT.S139262 DOI: https://doi.org/10.2147/OTT.S139262 [Google Scholar]
  77. Ward, R.J., R.R. Crichton, D.L. Taylor, et al. 2011. “Iron and the immune system.” J. Neural Transm. 118:315-28. DOI: https://doi.org/10.1007/s00702-010-0479-3 [Google Scholar]
  78. Weissman, I.L. 2000. “Stem cells: units of development, units of regeneration, and units in evolution.” Cell. 100 (1):157-68. Doi: 10.1016/s0092-8674(00)81692-x DOI: https://doi.org/10.1016/S0092-8674(00)81692-X [Google Scholar]
  79. Widłak, Małgorzata. 2011. “Toksyczność glinu wyzwaniem środowiskowym (przegląd literatury).” Rocznik Świętokrzyski. Ser. B – Nauki Przyr. 32:131-40. [Google Scholar]
  80. Wintz, M., T. Fox, and C. Vulpe. 2002. “Functional genomics and gene regulation in biometal research.” Bull. Environ. Contam. Toxicol. 30:765-68. DOI: https://doi.org/10.1042/bst0300766 [Google Scholar]
  81. Wlaschek, Meinhard, et al. 2019. “Iron and iron-dependent reactive oxygen species in the regulation of macrophages and fibroblasts in non-healing chronic wounds.” Free Radical Biology and Medicine 133:262-75. Doi: 10.1016/j.freeradbiomed.2018.09.036 DOI: https://doi.org/10.1016/j.freeradbiomed.2018.09.036 [Google Scholar]
  82. Yao, Y., Y. Lu, W. C. Chen, et al. 2014. “Cobalt and nickel stabilize stem cell transcription factor OCT4 through modulating its sumoylation and ubiquitination.” PLoS One. 9 (1):e86620. Doi: 10.1371/journal.pone.0086620 DOI: https://doi.org/10.1371/journal.pone.0086620 [Google Scholar]
  83. Yin, R., S.Q. Mao, B. Zhao, et al. 2013. “Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals.” J Am Chem Soc. 135 (28):10396-10403. Doi: 10.1021/ja4028346 DOI: https://doi.org/10.1021/ja4028346 [Google Scholar]
  84. Yin, R., J. Mo, J. Dai, et al. 2018. “Nickel(ii) inhibits the oxidation of DNA 5-methylcytosine in mammalian somatic cells and embryonic stem cells.” Metallomics. 10 (3):504-12. Doi: 10.1039/c7mt00346c DOI: https://doi.org/10.1039/C7MT00346C [Google Scholar]
  85. Yokoi, K., E.O. Uthus, and F.H. Nielson. 2002. “The essential use of nickel affects physiological functions regulated by the cyclic – GMP signal transduction system.” Proceedings of the 7th international symposium on metal ions in biology and medicine, St. Petersburg, Russia, 5-9. [Google Scholar]
  86. Yuan, Ye, Fei Xu, Yan Cao, et al. 2019. “Iron Accumulation Leads to Bone Loss by Inducing Mesenchymal Stem Cell Apoptosis Through the Activation of Caspase3.” Biological Trace Element Research 187, no. 2:434-41. Doi: 10.1007/s12011-018-1388-9 DOI: https://doi.org/10.1007/s12011-018-1388-9 [Google Scholar]
  87. Zabłocka, Agnieszka. 2006. In Postępy Higieny i Medycyny Doświadczalnej 60:209-16. [Google Scholar]
  88. Zhang, Y., W. Zhai, M. Zhao, et al. 2015. “Effects of iron overload on the bone marrow microenvironment in mice.” PLoS One. 10(3):e0120219. Doi:10.1371/journal.pone.0120219 DOI: https://doi.org/10.1371/journal.pone.0120219 [Google Scholar]
  89. Zhao, H., N. Sun, S.R. Young, et al. 2013. “Induced pluripotency of human prostatic epithelial cells.” PLoS One. 8 (5):e64503. Doi:10.1371/journal.pone.0064503 DOI: https://doi.org/10.1371/journal.pone.0064503 [Google Scholar]
  90. Zuziak, Justyna, and Małgorzata Jakubowska. 2016. “Glin w otoczeniu i jego wpływ na organizmy żywe.” Analit 2:110-20. [Google Scholar]

Downloads

Download data is not yet available.